We are in a new epoch, the Anthropocene, and research into our closest living relatives, the great apes, must keep pace with the rate that our species is driving change. While a goal of many studies is to understand how great apes behave in natural contexts, the impact of human activities must increasingly be taken into account. This is both a challenge and an opportunity, which can importantly inform research in three diverse fields: cognition, human evolution, and conservation. No long-term great ape research site is wholly unaffected by human influence, but research at those that are especially affected by human activity is particularly important for ensuring that our great ape kin survive the Anthropocene.

Understanding the human–ape interface
A primary goal of many field studies of animal behaviour is to obtain data on behaviour in the ecological contexts in which that behaviour is presumed to have evolved. Hence, for many research questions, scientists rightly seek to study populations in places remote from dense human settlements and minimally disturbed by human activities. While many researchers have thereby focused little attention on human impacts, the scale of impacts at many sites is now substantial enough that they should be explicitly taken into account. Given that great apes (here also referred to as apes) reproduce slowly and require natural forest for food and shelter, impacts such as hunting and deforestation can be devastating, causing local extinctions. However, where apes are not directly persecuted and some natural forest remains, apes can prove highly flexible. Here, we provide examples of how such behavioural flexibility (see Glossary) can inform research in cognition, human evolution, and conservation. We also explore the reasons why our current knowledge of ape flexibility in response to anthropogenic change is limited. We argue that ape populations that are most affected by such change provide important opportunities to help ensure the long-term survival of remaining wild ape populations.

Most contemporary ecosystems are affected by anthropogenic land use and activities, albeit to different degrees [1]. Many so-called ‘wild’ organisms are exposed to a variety of modern human activities, such as agriculture, hunting,
mining, and other extractive industries, and are affected by roads and settlements [2]. By 2030, it is predicted that less than 10% of currently existing African great ape habitat and only 1% of Asian great ape habitat will remain relatively undisturbed by human infrastructural development [3]. Anthropogenic exposure varies: at one extreme, in near-pristine areas, human–ape interactions are rare; at the other extreme, apes inhabit environments dominated by anthropogenic activities and their behaviour is greatly influenced by humans [4]. In these circumstances, wildlife adjusts its behaviour quickly in response, migrates, or perishes [5]. Here, we focus mostly on situations where great apes and sedentary human communities overlap spatially, such as in forest–farm mosaic landscapes, or at the edges of protected areas, but where apes are not usually hunted for food (i.e., directly persecuted). Where apes are hunted, they fear and avoid humans, making detailed studies of their behavioural responses near impossible (but see [6]).

How animals respond to human presence and activities are prominent research themes in the behavioural ecology of other charismatic mammals, such as large carnivores and elephants [7–9]. For these taxa, there is productive overlap between applied and theoretical research into behavioural flexibility and cognition. In the growing field of ethnoprimateology, research on nonhuman primate behaviour and ecology is combined with anthropological approaches to ensure that humans are considered part of natural ecosystems [10,11]. Such approaches until recently have received relatively little attention from great ape researchers. We suggest there are several reasons for the current limited knowledge.

First, for some species, the link between animal behaviour and human well-being is inescapable. For example, scientists must acknowledge local people’s interactions with large-bodied and wide-ranging carnivores when such animals are feared and people want them exterminated because of risks to livestock or human safety [12,13]. In many environments, humans do not commonly perceive wild apes as presenting severe threats to their safety. Hence, apes do not generally provoke the same level of fear and hostility commonly directed towards large carnivores [14]. As a result, scientists working with apes may be less aware of human–wildlife interactions.

Second, scientists have only recently appreciated the degree to which great apes can survive in disturbed and degraded ecosystems [15–17], which reflects their natural range of behavioural flexibility [18]. This creates new research opportunities that researchers are increasingly exploiting. There are pragmatic reasons for this shift in emphasis: in West African countries, c. 45–81% of chimpanzees exist outside designated protected areas [19], often in areas markedly modified by humans [20]. In Southeast Asia, >80% of orangutans now survive in multiple-use forests (protected or not) and in transformed ecosystems exploited by humans [21]. Human populations in Africa and Asia are expected to increase rapidly over the coming century and, correspondingly, ape populations will be affected by human activities, whether in islands of protected areas or mosaics of relict forest patches and farms.

Third, many great ape researchers are interested in understanding the adaptive significance of behavioural tendencies, which are assumed to have evolved in habitats undisturbed by human activity. Therefore, behaviour evinced by great apes in human-influenced habitats can be perceived as being less interesting (for the ‘tainted-nature delusion’, see [22]). In reality, few long-term great ape research sites are unaffected by human influences (Figure 1). The environment and behaviour recorded at most sites is influenced to varying extents by current or former human presence and activities (for chimpanzee crop-feeding, see [17], for orangutan terrestriality, see [23]; for changes in gorilla demography, see [24], but see [25] for chimpanzee conspecific killing).

We offer three examples of how research on apes in the Anthropocene can advance both pure and applied science, specifically in the fields of great ape behaviour, human evolution, and conservation.

How apes see their changing world: cognition
Great apes are known for their behavioural flexibility, frequent innovation, and high degree of cultural variation [26–28]. Therefore, we expect them to modify their behaviour in response to anthropogenic change. Given that flexible learning ultimately underlies much of the behaviour of these species, a cognitive analysis [29] offers new ways to improve the efficacy of behaviourally focused conservation efforts [30]. Whenever great apes are exposed to novel and potentially dangerous stimuli (e.g., vehicles, farmers, snares, crop protection techniques, or domestic dogs [31,32]), or new food sources (e.g., crops [15,17,33]), we have opportunities to examine their behavioural flexibility and the role it might have in their survival (Figure 2). We do not suggest that great apes are unique in their abilities to exhibit flexible responses to perceived and/or actual anthropogenic risk; rather that understanding the extent of this flexibility should form part of our tool-kit for unravelling the limits of their adaptability.

Behavioural flexibility in response to varied anthropogenic risk patterns
Chimpanzees evaluate and respond flexibly to challenges posed by humans and their activities, for example by taking account of the risks of including agricultural crops in their foraging decision-making. At Bossou, feeding parties are more cohesive during crop feeding than during wild foraging, but this does not apply to orchards abandoned by farmers, suggesting that an increased perception of risk is important (Figure 3A). At Bossou, party sizes are larger on days when crops are consumed than not [34] (Figure 3B); and at Kibale, Uganda, chimpanzee parties foraging in croplands contained more males yet produced fewer pant-hoot vocalisations compared with parties at the core of the range, likely due to elevated perceived risks of detection by humans [35]. Elsewhere at Kibale, chimpanzees feed on crops at night when maize fields are left unguarded [36], while at Bulindil, Uganda, where farmers frequently harass the apes, chimpanzees show increased willingness to risk costly encounters with humans to feed on crops when wild fruit availability is low [37].

Chimpanzees at Bossou cross roads daily to access parts of their home range. While no evidence indicates that Bossou chimpanzees have been killed or injured during
road-crossings, the positioning of dominant and bolder individuals varies according to the apparent degree of risk posed by human and vehicle traffic [31]; adult males also exhibit guarding behaviour in response to a visible threat: local people (Figure 2A).

Snare detection and behavioural adaptations to snare injury

Chimpanzees at Bossou understand the potential danger of wire snares, and some individuals deactivate snares safely [38]. Elsewhere, chimpanzees remove snares from the limbs of conspecifics (Budongo, Uganda [39] and Tai, Cote d’Ivoire [40]), while bonobos at Wamba, Democratic Republic of Congo, attempted with mixed success to do so [41] (Figure 2C). Mountain gorillas at Karisoke, Rwanda, show ‘snare awareness’, with reactions to snares varying from avoidance, to displaying near the snare, or threatening and/or biting individuals that approach it [42]. Despite this, many individuals still suffer limb injuries from snares (16% of mountain gorillas at Karisoke and 21% of chimpanzees at Budongo [43]). Individuals of both species adapt their feeding techniques to their disabilities, thus enabling them to survive under natural conditions. They retain the same processing techniques (i.e., overall plan or organisation) as the able-bodied, but work around each of the constituent actions in compensatory ways. For example, gorilla nettle feeding is a complex six-stage process that normally requires both hands. Injured gorillas show behavioural adaptations that solve the problems posed by the disability, such as using the support of tree branches, or foot or mouth instead of hand, modified grips, or the stump of the other hand instead of the thumb of the primary hand [44].

Contemporary models for palaeoanthropological reconstructions: human evolution

Understanding how flexible great apes are when challenged (e.g., through habitat degradation and other forces,
human-induced or not) can potentially provide insight into hominin evolution. Documenting what major habitat perturbation does to extant ape populations enables researchers to generate hypotheses about the origin of behaviours that are responses to those conditions. For example, Bossou chimpanzees, which spend much of their time in small forest fragments amid agricultural land [45], exploit underground storage organs of cultivated cassava as fallback

Figure 2. Great apes are frequently exposed to humans and their activities: (A) chimpanzees at Bossou, Guinea, crossing a road frequented by vehicles and pedestrians; (B) an orangutan feeding on oil-palm fruits and pith in a plantation in Borneo; (C) bonobos at Wamba, DRC, examining a metal snare on the fingers of an adult female; and (D) mountain gorillas stripping the bark of eucalyptus trees planted at the periphery of Volcanoes National Park, Rwanda. Reproduced, with permission, from Mohamed Daisah bin Khapar (B), Takeshi Furuichi (C), and Magdalena Lukasik-Braum/MGVP Inc. (D).

Figure 3. Chimpanzees modify their grouping patterns according to anthropogenic risk: (A) mean ± standard error (SE) chimpanzee party spread and proximity of nearest neighbours when feeding arboreally on wild foods (white bars) versus guarded crops (grey bars) at Bossou. By contrast, no significant differences emerged when party spread and proximity were compared during arboreal wild feeds and abandoned crop feeds (which are similar in size and/or density), suggesting that the degree of perceived risk associated with feeding on crops guarded by humans is the most likely explanation. (B) Effect of guarded crop feeding and female sexual receptivity and their interaction on party size. To show the interaction effect, data are presented on line graphs. Chimpanzees entered guarded agricultural areas to feed on crops (broken line versus noncrop feeding, solid line) when party size was larger, but only when a maximally swollen female was present. Other social and ecological factors did not influence daily party size. This interaction might reflect male mate guarding (and a desire for males in general to remain in proximity to the female) during periods of female sexual receptivity, with associated perception of increased security by party members. Males might be more willing to engage in risky raids when other males are present in larger party sizes for support, or to ‘show off’ their boldness to females through crop raiding during these periods. Adapted from [34] (A).
foods [46]. They also transport stone tools and crops bipedally: stones and crops are both items that are unpredictable in availability [47]. In addition, they share large-sized crops (e.g., papaya fruit) among unrelated individuals more frequently than they do wild foods, especially under ‘riskier’ conditions, such as when crops are further from the forest and humans are present [48,49]. Thus, Bossou chimpanzees engage in several behaviour patterns that are thought to be important for human evolution, but less commonly seen in other chimpanzee populations.

Understanding how well, and for how long, a species can withstand a deteriorating environment provides insights into how ancestral and fossil populations might have coped with similarly deteriorating conditions in the past. Although conservation efforts ideally seek to halt and reverse population declines, tracking the extinction of local ape populations can potentially identify the point at which the equilibrium between ecological change and behavioural flexibility breaks down [18]. Moreover, by understanding how populations of extant apes change their behaviours to human-driven environmental pressures, we can develop models for how, in the course of evolution, synchronous and variably sympatric hominins could have responded to changing local conditions [50].

Coexistence of different hominins

Apes have coexisted with humans, human ancestors, and other early relatives of humans for millions of years. The fossil evidence makes clear that several hominin species occupied the same region simultaneously (Figure 4). In the Omo-Turkana Basin of southern Ethiopia and northern Kenya, early Homo and Paranthropus species co-occurred not only regionally, but also at some of the same palaeontological sites for at least 1 million years [51]. Similarly, there was coexistence for perhaps a few thousand years between Homo neanderthalensis and Homo sapiens, with attendant competition over space and resources, including plant and meat foods [52]. The first and last appearances of fossil hominin species likely underestimate the true extent of their temporal overlap. Therefore, understanding how sympatric apes interact (e.g., sympatric gorillas and chimpanzees [53,54]), as well as the ways in which apes interact with sympatric humans, can help to elucidate the ways in which different hominin species interact.

![Time range of hominin species, with major climatic, environmental, and cultural developments. At approximately 3.4 million years ago (Mya), there were at least four hominin species in Africa, but so far there is no evidence for their sympatry. Between approximately 2.5 and 1.4 Mya, there is evidence of Homo and Paranthropus species co-occurring (and possibly coexisting) at several sites in the Omo-Turkana Basin of Ethiopia and Kenya. Produced by René Bobe.](image-url)
might have coexisted. For example, in Lopé, Gabon, three hominoid genera (*Pan*, *Gorilla*, and *Homo*) have coexisted for at least 60,000 years [55], but likely much longer. There probably has always been dietary overlap among these genera, with competition over certain foods, such as fruits and honey.

Ape survival alongside local people: conservation

All great ape species and subspecies are listed as Endangered or Critically Endangered by the International Union for Conservation of Nature, and all but one subspecies (mountain gorillas, with approximately 880 individuals remaining), are declining in numbers [56]. Successful conservation of great apes requires both legally protected areas and means of ensuring the survival of populations outside of formally protected areas. Hence, the need to understand short- and long-term responses to human pressures by great apes is urgent [57]. Although apes (with species and subspecies differences) show behavioural flexibility to immediate anthropogenic pressures, this does not justify further modification of their habitats. Their ability to cope with human impacts is limited by requirements for intact forests for food and shelter. It is unlikely that extensively farmed landscapes can sustain viable populations of great apes in the long term [58]. With increasing habitat destruction and conversion of forest to other land uses, great apes will be compressed into ever-smaller pockets (potentially at unusually high population densities), hanging on for a while, but with little chance of surviving long term, especially if climate change affects the distribution of forests such that relict areas are no longer forested [57]. Changes in the demography of ape populations, with their slow life histories, can occur over long periods, with a lag effect between human pressures and demographic change. Some behavioural responses (e.g., crop feeding, livestock depredation, and aggression towards humans) ultimately might be maladaptive if they provoke human retaliation [59], or increase risk of exposure to deleterious human and livestock pathogens [60], leading to increased extinction risk. Where apes are viewed as problematic by their human neighbours, retaliatory killings and lethal crop protection methods take their toll [32,61]. The close phylogenetic relation between humans and great apes facilitates the risk of disease exchange in closely shared landscapes [62]. To date, no quantitative assessment of the long-term viability of apes (i.e., analysis of birth, death, and migration rates) across sites of varying anthropogenic disturbance has been attempted, but an important factor precipitating rapid population collapse and, thus, local extinction, is small population size [57].

Human–ape interactions and conflict mitigation

Human–wildlife ‘conflict mitigation’ strategies to reduce crop damage or aggressive interactions (but see Glossary for discussion of the term ‘human–wildlife conflict’) should take into account the complex adaptive responses of large-brained species, because solutions often are not straightforward [2,4]. For great apes, information about which crops are eaten and which are ignored, and their potential to generate conflict, can help stakeholders to develop effective management schemes in anthropogenic habitats [17]. For example, chimpanzees predictably target fruit crops, but their selection diversifies over time to incorporate more nonfruits, including underground storage organs and staple human crops [63]. Effective crop-foraging deterrents must address these dynamic feeding changes, as well as attempt to increase the perceived risk to an ape exploiting croplands. At Budongo, guarding of fields, involving regular patrolling of field perimeters by a male guard armed with a stick, was highly effective (albeit time consuming) for deterring chimpanzees [64]. At Batan Serangan, Sumatra, the experimental introduction of hand-held firecracker cannons as noise deterrents and tree barrier nets to close off arboreal travel pathways reduced crop feeding by orangutans at randomly selected farms compared with control farms, where crop feeding increased [65].

Humans kill great apes for various reasons, including for food and medicine, to obtain infants to sell, and in retaliation for crop losses or ape attacks on people. Although the risk of aggressive encounters between humans and wild apes is low, the causes of ape aggression towards humans are complex and varied [4]. Most documented ape attacks on humans involve chimpanzees and occur on village paths or in fields bordering forest. As with chimpanzee aggression more generally [25,66], most attackers are males. Most victims are children (of both sexes), and attacks sometimes, but not always, appear driven by predatory tendencies [59,67,68]. Triggers for nonpredatory attacks might include provocation by humans, sudden unexpected encounters at close range, overhabitation to humans, and adult male chimpanzees asserting their dominance. At Bossou, local people use simple measures to reduce the likelihood of surprise encounters with chimpanzees, such as cutting down crop trees along forest edges, or regular small-scale cutting back of vegetation in areas frequented by humans and chimpanzees, such as fields, paths, and trails [67]. Simple, transparent, and cost-effective methods for protecting humans and reducing crop damage need to be identified and developed to gain the support of local communities and industries alike for great ape conservation. However, problematic great ape behaviour is only one aspect of conflict, with social drivers (such as cultural norms and expectations, social tensions, fear, and lack of knowledge) often increasing the intensity of conflict generated. Conservation conflicts are fundamentally driven by humans [69], who have different goals, agendas, and levels of empowerment [70].

Concluding remarks

We are in a new epoch, the Anthropocene, and research must keep pace with the speed at which our species is driving global change. To predict the threshold beyond which ape populations are unable to accommodate human presence and activities, and local people can no longer tolerate apes and other wildlife, research is needed on populations at different stages of the anthropogenic continuum. To do this, we should abandon a simplistic ‘anthropogenic-or-not’ approach and instead identify variables, including human activities and customs, which accurately characterize the different types of anthropogenic landscape, and determine their influence on the behaviour of apes and other wildlife.
Research on apes across the anthropogenic continuum offers new opportunities to develop understanding of great ape flexibility in the face of unprecedentedly rapid environmental changes; doing so will potentially open a window into the evolution of modern human and ape adaptability. Social as well as natural science approaches are crucial and must be tied to conservation and behavioural research [10,70]. Care should be taken when conducting research in human-impacted habitats to ensure ethical practice and support by local people [71,72]. For example, researchers following apes into crop fields might be perceived negatively by local farmers as disregarding their needs, and might also contribute to ape habituation to human presence in croplands, reducing the apes’ fear of these areas. Scientists will have to approach the proposed research agenda with open minds, and conventional beliefs might well be challenged [73]. Conservation should ‘focus on the inevitably novel future rather than the irretrievably lost past’ [(74), p. 38], because the time for delegating pristine ‘natural’ environments to be the sole solution for preserving great apes in the ‘wild’ is, unfortunately, long gone. While parks and other protected areas must remain a key conservation strategy, the survival of large, diverse populations requires finding ways for humans and apes to also coexist outside protected areas.

Acknowledgements
We thank Gill Campbell-Smith, Simon Husson, Andrew Marshall, Erik Meijaard, Maria van Noordwijk, Anne Husson, Carel van Schaik, Ian Singleton, and Stephanie Sperhar for rating disturbance to orangutan habitat, and Romain Beville, David Greer, Josephine Head, Philipp Henschel, Fiona Maisels, Christopher Orrell, and Angelique Todd for rating disturbance to gorilla habitat. This work was supported by a research grant to K.J.H. from FCT, Portugal (PTDC/CS-ANT/121124/2010) and from MEXT, Japan (C05N/PWS-U04).

References
4 Hockings, K.J. and Humle, T. (2009) Best Practice Guidelines for the Prevention and Mitigation of Conflict between Humans and Great Apes, IUCN/SSC, Primate Specialist Group
6 Hicks, T.C. et al. (2013) Impact of humans on long-distance communication behaviour of Eastern Chimpanzees (Pan troglodytes schweinfurthii) in the Northern Democratic Republic of the Congo. Folia Primatol. 84, 135–156
9 McComb, K. et al. (2014) Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. PNAS 111, 5433–5438
14 Hockings, K.J. et al. (2014) Fear beyond predators. Science 344, 981
33 Campbell-Smith, G. et al. (2011) Raiders of the lost bark: orangutan foraging strategies in a degraded landscape. PLoS ONE 6, e20962
56 IUCN (2014) The IUCN Red List of Threatened Species (version 2014.2), IUCN
60 Parsons, M.B. et al. (2014) Global positioning system data-loggers: a tool to quantify fine-scale movement of domestic animals to evaluate potential for zoonotic transmission to an endangered wildlife population. PLoS ONE 9, e110984