Category Archives: Isotopes

Kalande

On June 10th, I traveled to the south of Gombe to visit the range of the little-known Kalande community of chimpanzees.

Map of Gombe National Park and chimpanzee ranges (from Rudicell et al., 2010)
Map of Gombe National Park and chimpanzee ranges (from Rudicell et al., 2010)

The Kalande community is one of three chimpanzee communities at Gombe.

The most famous, most intensively studied chimpanzees live in the Kasekela community in the center of the park. These are the chimpanzees that Jane Goodall has studied since 1960. They have the biggest range and the most members of the park’s three communities.

To the north of Kasekela live the Mitumba chimpanzees. This is a smaller community, which Deus Mjungu studied for his PhD research. The Mitumba community has fewer chimpanzees than Kasekela, but is still vigorous. They have a small range, but it includes excellent chimpanzee habitat with lots of food trees.

To the south is the Kalande community (also known as Bwavi). Most of the Kalande community’s range is grassland and woodland, with narrow strips of forest along the stream valleys. We know less about the Kalande chimpanzees than any of the others in Gombe. For the most part, these chimpanzees are still unhabituated, meaning they fear people. Researchers can follow the Kasekela and Mitumba chimpanzees around all day long, but they are lucky to get even fleeting glimpses of Kalande chimpanzees.

We aren’t even completely sure how many chimpanzees live in Kalande. Based on sightings and samples of genetically distinct individuals, there seem to be at least 9 chimpanzees in Kalande, but we don’t know for sure.

Skull from a male chimpanzee found dying in Kalande in 1994 or 1995.
Skull from a male chimpanzee found dying in Kalande in 1994 or 1995.

A small team of researchers monitor the Kalande chimpanzees. They collect fecal samples for genetic analysis, which enables us to keep track of individuals, even when we don’t know what they look like. Kalande has the highest rate of infection with the virus SIVcpz, which likely contributed to the decline of this community (Rudicell et al., 2010). Many females have left Kalande for other communities, both as part of the natural emigration process (females usually leave to join a new community when they are sexually mature), and because as Kalande declined, it eventually came to have too few males. Females seem to prefer living in communities with many males, both because many males are better able to defend the feeding territories that females need to survive and raise their offspring, and because females need unrelated males as mating partners. As the number of adult males in Kalande dropped down to one, or perhaps even zero, some Kalande females left for good, while others seem to have kept their Kalande home base, but visit Kasekela for mating.

Kat and Kazi, photographed when visiting Kasekela (20 April 2006)
Kat and Kazi, photographed when visiting Kasekela (20 April 2006)

Kati, for example, is a Kalande resident who has probably lived there since 1998.  Based on genetic data, we think she is the daughter of Patti who was known as Tita when she was younger. Since 2006, Kati has been making occasional visits to Kasekela. I saw her with her young son Kazi on one of these early visits. Of the Kalande chimps, Kati seems to fear people the least, which would make since if she grew up in Kasekela.

Deus and I took the boat to Kalande, where we met Ashaabu, one of the new Kalande research assistants. Ashaabu got his start working as a village Forest Monitor for his village’s forest reserve (part of the Greater Gombe Ecosystem project). Before going into the forest, we talked with Ashaabu for a while about which chimpanzees he has been seeing.

Kazi, who was just a little boy back in 2006, now seems to be the alpha male of Kalande, even though he is just a gawky adolescent. Based on how old Kazi looked back in 2006, I think he must be at least 12 years old now. Ashaabu says Kazi is around the size of the Kasekela male Fundi, who is about 14. The old male Renadi (or Leonard) hasn’t been seen for a number of years now, and I suppose must be dead. There might be another adolescent male, Pamera, but we don’t know for sure if he is still alive. Ashaabu has regularly seen Kati, Kazai, Katarina (Kati’s new baby), a big female without an infant, an adolescent female (who I think might be Pairott), and another young female around Kazi’s size. (Perhaps this is really Pamera? Might be hard to tell he’s a male if he’s still young and seen only briefly from a distance.) Ashaabu also mentioned Obedina, a female who had a big belly last year who might also have a new baby now.

After talking, we hiked into the forest, climbing a steep rocky path into Nyamagoma valley. Nyamagoma is the southernmost valley of the park, just north of Kazinga village. The path wound through an open woodland with a view of the lake below.

Ashaabu collecting Msongati fruits.
Ashaabu collecting Msongati fruits.

Along the way, we collected fruits and leaves for the isotope and nutrition projects. Given that Kalande has so much woodland, it will be interesting to see if the Kalande chimpanzees, or their foods, differ isotopically at all from those in Kasekela.

Ashaabu and Deus below a chimp nest.
Ashaabu and Deus below a chimp nest.

We followed the path down towards Nyamagoma Stream, where tall trees grew, shading the steep valley in green light. We didn’t see any chimpanzees, but we did see a number of nests. Chimpanzees build a new nest (or bed) in trees each night to sleep safely out of reach of any predators that might be lurking about. We found one cluster with five fresh nests, suggesting that up to seven chimpanzees might have slept there (if the group included Kati and Obedina and their new babies). It was encouraging to see so many fresh signs of chimpanzees using this valley. The Kalande community is still hanging in there, and perhaps they might recover, if the Kasekela males don’t catch Kazi and finish him off.

Ashaabu taking data on his tablet.
Ashaabu taking data on his tablet.

Ashaabu carried with him the tablet computer he had used as a Forest Monitor. He used the tablet to take pictures of the nests and enter the data, including GPS locations of the nests. It was quite stunning for me to think each of the villages around Gombe now has its own Forest Monitors, collecting data like this on their own village forest reserves, and loading it up regularly into the Cloud.

 

 

 

 

 

 

 

 

Director of Chimpanzee Research for Gombe Stream Research Centre.

 

,

 

 

Isotopes and Isoptera

My main goal in visiting Gombe this trip was helping my graduate student, Rebecca Slepkov Nockerts, get started with her project on the stable isotope ecology of chimpanzees and baboons at Gombe.

Over the past couple of decades, stable isotope studies have revolutionized the study of the diets of human ancestors.

Isotopes are variants of chemical elements that differ only in the number of neutrons. For example, carbon has three naturally occurring isotopes, of which Carbon-12 (12C) is the most common. All carbon atoms have 6 protons – that’s what makes them carbon atoms, and not some other element. 12C has 6 protons and 6 neutrons, and is stable – each atom can last for billions of years. Carbon-14 (14C) is a radioactive isotope of carbon. It has 6 protons and 8 neutrons – which makes it unstable. It gradually decays, turning into Nitrogen-14 while spitting off an electron and an electron anti-neutrino. By geological standards, 14C  decays relatively quickly, making it useful for dating objects containing carbon that are up to about 60,000 years old.

The third naturally occurring isotope of carbon, 13C, has 6 protons and 7 neutrons, and is stable, though  much less common than 12C. For the most part, chemical reactions  involve interactions among electrons, and to some extent protons. Neutrons don’t get involved. As a result. 13C behaves chemically almost exactly like 12C. However, in some reactions, the slightly different mass of the heavier isotopes can make a difference. For example, in photosynthesis, molecules containing 13C move more slowly, because they are heavier, and end up in different proportions in the final product.

As it turns out, several different major groups of plants use different mechanisms of photosynthesis, which produce distinct isotopic signatures. Especially important in paleoanthropology are C3 plants (most plants, including most forest species) and C4 plants (certain plants adapted to hot dry climates, including many tropical grasses and sedges).

Unfortunately, all of these different numbered C’s quickly get very confusing! But the main thing to remember is that C3 = forest, C4=grass.  Chimpanzees mainly eat C3 forest plants. Even in dry woodlands, chimpanzees eat mainly forest plants: fruit, seeds, flowers and leaves from trees, vines and shrubs growing along rivers and streams. In contrast, baboons eat more C4 plants – especially grass seeds and corms. Similarly, stable isotope studies of fossils have found that early hominins ate mainly Cplants (and/or animals that ate Cplants), whereas later hominins at more C4 plants (and/or animals that ate C4 plants).

However, all of these inferences about hominin diet depend on some assumptions about how different tissues reflect diet. Unfortunately, studies comparing hominin isotope signatures to those of living species usually use different tissues. Studies of fossils usually use tooth enamel, which is extremely stable and thus is thought to maintain a good record of the living animal’s isotope signature for millions of years after death. Studies of living primates, however, usually use tissues that are easier to obtain, such as hair and feces, because it is hard to get tooth enamel from living animals (which are generally busy using their teeth). We therefore don’t know nearly enough about how diet translates to isotope signatures across these different tissues in living species. This is what Rebecca plans to find out.

Freud eating termites  (02 Nov 2006)
Freud eating termites
(02 Nov 2006)

The long-term study of chimpanzees and baboons at Gombe brings together the key pieces needed for this study: expertise in identifying and collecting the important food species, long-term records on diet, and skeletons from known individuals. For example, we have a lifetime of data on chimpanzees like Freud, pictured here in November, 2006 eating termites.

Rebecca and Deus examining the bones of Freud the chimpanzee
Rebecca and Deus examining the bones of Freud the chimpanzee

Freud recently died, at nearly 43 years of age (making him one of the longest lived Gombe males). Thanks to concerted efforts over the years by people at Gombe Stream Research Centre, the skeletons of Freud and many other well known individual chimpanzees and baboons have been preserved. Thanks to a lifetime of data on these individuals, we know a lot about what they have been eating. This comprehensive data on individuals will provide an unparalleled amount of detail for matching up diet to isotope signatures of different tissues.

It is particularly interesting to look at chimpanzees and baboons at Gombe because these two quite similar species differ somewhat in their diets in ways that parallel some differences between early and later hominins: baboons eat more grass than chimpanzees, just as later hominins appear to have eaten more grass (and/or grass-eating animals) than earlier hominins.

Rebecca and baboons collecting grass samples
Rebecca and baboons collecting grass samples

We are working together with Carson Murray and Rob O’Malley, who are conducting a nutritional study of chimpanzees. Both the nutritional study and the isotope study need foods to be collected, so we will work together to collect foods and share samples.

Rob did his PhD work at Gombe, studying insectivory by chimpanzees. Chimpanzees and baboons both eat a wide range of insects at Gombe.

Termites emerging from the nest
Termites emerging from the nest

On our first day in the field, we were lucky to catch an emergence of flying termites (“kumbi kumubi” in Swahili). These members of the infraorder Isoptera are one of the most important insect foods, not only for chimpanzees and baboons, but also many birds, monitor lizards, and even people.

Rebecca and Rob collecting termites.
Rebecca and Rob collecting termites.

We also found a nice column of Dorylus army ants (“siafu” in Swahili).

siafu jaws
Column of army ants showing off their jaws
Army ant soldier biting Rob's thumb.
Army ant soldier biting Rob’s thumb.

From an isotopic perspective, insects like termites and army ants may be interesting mainly for another isotope, Nitrogen, which provides information about where an animal gets its protein from. The higher the animal’s trophic level (the higher it is in the food chain), the more enriched its tissues are in the heavier Nitrogen isotope, 15N. It will be interesting to see whether chimpanzees and baboons at Gombe differ in their Nitrogen isotope signatures, and whether the isotopic signatures of individual chimpanzees relate to how much meat or insect matter they ate while alive.

At the night meeting, Rob and Rebecca explained their projects to the chimpanzee field staff. Rob talked about nutritional differences that he had found between ants and termites. I noted that “even people like to eat termites, right?” The field assistants responded with many people talking at once. The general consensus: “We like to eat termites, yes, but we like locusts even better!”

And I have to agree. Termite sauce with mushrooms is okay but seems a bit buggy to me, whereas fried locusts quite tasty.